public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
// state: f[i][j] - longest LCS of A.substring(0, i] and B.substring(0, j]
// function: f[i][j] = f[i - 1][j - 1] + 1, if A[i] == B[j]
// = Max(f[i - 1][j], f[i][j - 1]), if A[i] != B[j]
// initialize: f[i][0] = A[i] == B[0] ? 1 : 0,f[0][i] = A[0] == B[i] ? 1 : 0
// result: f[A.length - 1][B.length - 1]
public int longestCommonSubsequence(String A, String B) {
// write your code here
if (A == null || B == null || A.length() == 0 || B.length() == 0) {
return 0;
}
int[][] f = new int[A.length()][B.length()];
for (int i = 0; i < A.length(); i++) {
f[i][0] = A.charAt(i) == B.charAt(0) ? 1 : 0;
}
for (int j = 0; j < B.length(); j++) {
f[0][j] = A.charAt(0) == B.charAt(j) ? 1 : 0;
}
for (int i = 1; i < A.length(); i++) {
for (int j = 1; j < B.length(); j++) {
if (A.charAt(i) == B.charAt(j)) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[A.length() - 1][B.length() - 1];
}
}
2016年8月4日星期四
[LintCode] #77 Longest Common Subsequence
订阅:
博文评论 (Atom)
没有评论:
发表评论