Problem:
Given two words (beginWord and endWord), and a dictionary, find the length of shortest transformation sequence from beginWord to endWord, such that:Only one letter can be changed at a time
Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Java Code:
public class Solution {
public int ladderLength(String start, String end, Set<String> dict) {
Queue<String> queue = new LinkedList<String>();
queue.offer(start);
dict.remove(start);
int length = 1;
while (queue.peek() != null) {
int size = queue.size();
for (int i = 0; i < size; i++) {
String temp = queue.poll();
for (char c = 'a'; c <= 'z'; c++) {
for (int j = 0; j < temp.length(); j++) {
if (c == temp.charAt(j)) {
continue;
}
char[] chars = temp.toCharArray();
chars[j] = c;
String cur = new String(chars);
if (cur.equals(end)) {
return length + 1;
}
if (dict.contains(cur)) {
queue.offer(cur);
dict.remove(cur);
}
}
}
}
length++;
}
return 0;
}
}
没有评论:
发表评论